From the given two algebraic structures we can always get a bigger algebraic structure by taking the cross product of the two
structures.
Let (S , *) and (T , D ) be two semigroup. The direct product of (S , *) and (T , D ) is the algebraic structure (S´ T,
where the operation
(s2, t2)
From the definition it follows that (S´ T,
operations * and D and both are associative, so the new operation ‘
semigroup. Further, if S and T both are monoids with e and e¢ be their respective identity elements then the element (e, e¢ ) of
S´ T acts as an identity element. Hence (S´ T ,
No comments:
Post a Comment